Второй закон термодинамики в контексте современной физики

  • Иван Александрович Карпенко
Ключевые слова: второй закон термодинамики, энтропия, космология, стрела времени, гравитация, квантовые флуктуации

Аннотация

Второй закон термодинамики выражается в росте энтропии - в поверхностной интерпретации этот принцип предполагает, что качественная энергия неизбежно превращается в некачественную энергию. Порядок со временем превращается в хаос, однако хаос также превращается в порядок - при особых обстоятельствах. В статье устанавливаются некоторые донаучные представлений о феномене -философские интуиции, которые предшествовали научному открытию второго закона и возможно идейно имели с ним корреляции, с тем чтобы корректно интерпретировать его следствия в контексте современной физики. Это существенно, потому что в истории философии и науки всегда существуют определённые связи и преемственность - без установления таких связей правильное и актуальное истолкование явления становится затруднительным, если не невозможным. Основная цель исследования заключается в корректном понимании Второго закона и какое значение имеют его основные следствия. Для этого необходимо дать Второму закону правильную интерпретацию, которая позволит сделать предположения о его связи со временем в контексте проблемы начального состояния и о возможных новых путях развития современной физики, в частности квантовой гравитации. Предлагаются два решения проблемы связи энтропии и начального состояния в контексте дискуссии о стреле времени.

Скачивания

Данные скачивания пока недоступны.

Литература

Albert, Z. Time and Chance. Cambridge: Harvard University Press, 2003, 192 pp.
Aristotle. Metaphysics. Indianapolis: Hackett Publishing Company, 2016, 712 pp.
Aristotle. Physics. Indianapolis: Hackett Publishing Company, 2018, 420 pp.
Arshinov, V.I. “Vremja-kommunikacija-Vselennaja” [Time-Сommunication-Universe], in: V. Kazytinski (ed.). Metavselennaja, prostranstvo, vremja [Metaverse, Space, Time]. Moscow: Institut filosofii RAN, 2013, pp. 4‒24. (In Russian)
Attard, P. Non-Equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications. Oxford: Oxford University Press, 2012, 480 pp.
Augustine. Confessions. Oxford: Oxford University Press, 2009, 352 pp.
Bardon, A., Dyke, H. (eds.) A Companion to the Philosophy of Time. Wiley-Blackwell, 2013, 600 pp.
Belavkin, V. “Dynamical Solution to the Quantum Measurement Problem, Causality, and Paradoxes of the Quantum Century”, Open Systems and Information Dynamics, 2000, vol. 7 (2), pp. 101‒129.
Berkeley, J. Sochinenija [Compositions]. Moscow: Mysl, 1978, 556 pp. (In Russian)
Blundell, S.J., Blundell, K.M. Concepts in Thermal Physics. Oxford: Oxford University Press, 2009, 516 pp.
Borgnakke, C., Sonntag, R. Fundamentals of Thermodynamics. New York: Wiley, 2012, 912 pp.
Braginsky, V., Khalili, F.Y., Thorne, K.S. (ed.) Quantum Measurement. Cambridge: Cambridge University Press, 1992, 212 pp.
Callender, G. “What Is ‘The Problem of the Direction of Time’?”, Philosophy of Science, 1997, vol. 64, no. 4, pp. 223‒234.
Callender, G. “There Is No Puzzle About the Low-Entropy Past”, in: Hitchcock, C. (ed.). Contemporary Debates in Philosophy of Science. Bodmin: Blackwell, 2004, pp. 240‒257.
Callender, G. “The Past Hypothesis Meets Gravity”, in: Hüttemann, A. & Ernst, G. (eds.). Time, Chance and Reduction. Cambridge: Cambridge University Press, 2010, pp. 34‒58.
Callender, G. What Makes Time Special. Oxford: Oxford University Press, 2017, 336 pp.
Carathéodory, C. “Über den Wiederkehrsatz von Poincaré”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1919, pp. 580‒584.
Feynman, R. “The Theory of Positrons”, Physical Review, 1949, vol. 76 (6), pp. 749‒759.
Frisch, M. “Does a Low-Entropy Constraint Prevent Us from Influencing the Past?”, in: Hüttemann, A. & Ernst, G. (eds.). Time, Chance and Reduction. Cambridge: Cambridge University Press, 2010, pp. 13‒33.
Goldstein, S., Tumulka, R., Zanghi, N. Is the Hypothesis About a Low Entropy Initial State of the Universe Necessary for Explaining the Arrow of Time? https://arxiv.org/pdf/1602.05601.pdf, accessed on 19.02.2020].
Grandy, W.T. Entropy and the Time Evolution of Macroscopic Systems. Oxford: Oxford University Press, 2008, 256 pp.
Greenstein, G.S., Zajonc A.G. The Quantum Challenge: Modern Research On The Foundations Of Quantum Mechanics. Burlington: Jones & Bartlett Learning, 2005, 296 pp.
Greven, A., Keller, G., Warnecke, G. Entropy. Princeton: Princeton University Press, 2003, 384 pp.
Guth, A. The Inflationary Universe: The Quest For A New Theory Of Cosmic Origins. New York: Basic Books, 1997, 358 pp.
Hawking, S. “Black Hole Explosions”, Nature, 1974, 248 (5443), pp. 30‒31.
Herbert, H.W. Quantum Gravitation: The Feynman Path Integral Approach. New York: Springer Publishing, 2009, 342 pp.
ant, I. Kritika chistogo razuma [Kritik der reinen Vernunft]. Moscow: Mysl, 1994, 591 pp. (In Russian)
Karpenko, A. “V poiskah real’nosti: Ischeznovenie” [In Search of Reality: Disappearance], Filosofiya nauki – Philosophy of Science, 2015, no. 20,
pp. 36‒72. (In Russian)
Karpenko, I.A. “Problema interpretatsii ponyatiya vremeni v nekotorykh kontseptsiyakh sovremennoi fiziki” [Concept of Time Problem Interpretation in Several Modern Physics Theories], Voprosy filosofii, 2016, no. 9, pp. 72‒83. (In Russian)
Karpenko, I.A. “Filosofskaya interpretatsiya sovremennykh podkhodov k sozdaniyu kvantovoi teorii gravitatsii” [Philosophical Interpretation of Modern Approaches to the Creation of Quantum Theory of Gravity], Filosofija nauki i tehniki – Philosophy of Science and Technology, 2018, vol. 23, no. 1, pp. 54‒67. (In Russian)
Koyré, A. “Zametki o paradoksah Zenona” [Notes on Zeno’s Paradoxes], in: Koyré, A. Ocherki istorii filosofskoi mysli [Essays on the History of Philosophical Thought]. Moscow: Progress, 1985, pp. 25‒71. (In Russian).
Landes, D. Revolution in Time: Clocks and the Making of the Modern World. Cambridge: Harvard University Press, 2000, 502 pp.
Maldacena, J. “The Large N Limit of Suрerconformal Field Theories and Suрergravity”, International Journal of Theoretical Рhysics, 1999, vol. 38, no. 4, рр. 1113‒1133.
Nagashima, Y. Elementary Particle Physics: Foundations of the Standard Model, vol. 2. New York: Wiley, 2013, 646 pp.
Oriti, D. (ed.) Approaches to Quantum Gravity. Toward a New Understanding of Space, Time and Matter. Cambridge: Cambridge University Press, 2009, 604 pp.
Poincaré, H. “Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt”, Acta Mathematica, 1890, vol. 13 (1‒2), pp. 1‒270.
Porus, V.N. “Kontekstualizm v filosofii nauki” [Contextualism in the Philosophy of Science], Epistemology & Philosophy of Science, 2018, vol. 55, no. 2, pp. 75‒93. (In Russian)
Price, H. Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. Oxford: Oxford University Press, 1996, 322 pp.
Schulman, L.S. “Note on the Quantum Recurrence Theorem”, Physical Review A, 1978, vol. 18 (5), pp. 2379‒2380.
Schwartz, D. Quantum Field Theory and the Standard Model. Cambridge: Cambridge University Press, 2013, 859 pp.
Sevalnikov A. “Vremya v kvantovoy teorii” [Time in Quantum Theory], Metafizika – Metaphysics, 2018, no. 1 (27), pp. 73‒77. (In Russian)
Smolin, L. Time Reborn: From the Crisis in Physics to the Future of the Universe. Boston: Houghton Mifflin Harcourt, 2013, 352 pp.
Smolin, L., Unger, R.M. The Singular Universe and the Reality of Time. Cambridge: Cambridge University Press, 2014, 565 pp.
Stokes, P. “Fearful Asymmetry: Kierkegaard’s Search for the Direction of Time”, Continental Philosophy Review, 2010, vol. 43, no. 4, pp. 485‒507.
Susskind, L. “The World as a Hologram”, Journal of Мathematical Рhysics, 1995, vol. 36, no. 11, рр. 6377‒6396.
’t Hooft, G. Dimensional Reduction in Quantum Gravity. [httрs://arxiv.org/рdf/ gr-qc/9310026v2.рdf, accessed on 22.12.2019].
Vincent, F.R. (ed.) Classical and Quantum Gravity: Theory, Analysis and Applications (Physics Research and Technology). New York: Nova Science Pub Inc., 2012, 656 pp.
Wallace, D. “Gravity, Entropy, and Cosmology: in Search of Clarity”, British Journal for the Philosophy of Science, 2010, vol. 61, no. 3, pp. 513‒540.
Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton: Princeton University Press, 2014, 842 pp.
Whitrow, G.J. What is time? The Classic Account of the Nature of Time. Oxford Oxford: University Press, 2004, 192 pp.
Whitrow, G.J. Time in History: Views of Time from Prehistory to the Present Day. Oxford, Oxford University Press, 2004, 229 pp.
Witten, E. “String Theory Dynamics in Various Dimensions”, Nuclear Physics B, 1995, vol. 443, no. 1, pp. 85‒126.
Yau, S.-T., Nadis, S. The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions. New York: Basic Books, 2010, 400 pp.
Zwiebach, B. A First Course in String Theory. Cambridge: Cambridge University Press, 2009, 694 pp.
Опубликован
2020-12-22
Как цитировать
Карпенко И. А. Второй закон термодинамики в контексте современной физики // Эпистемология и философия науки. 2020. Т. 57. № 3. С. 142-159.
Раздел
Case studies - Science Studies